A New Kind of Science

Stephen Wolfram

Language: English

Publisher: Wolfram Media

Published: May 13, 2002

Description:

Starting from a collection of simple computer experiments illustrated by striking computer graphics Stephen Wolfram shows in this landmark book how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science, from the origins of apparent randomness in physical systems, to the development of complexity in biology, the ultimate scope and limitations of mathematics, the possibility of a truly fundamental theory of physics, the interplay between free will and determinism, and the character of intelligence in the universe.

Amazon.com Review

Physics and computer science genius Stephen Wolfram, whose Mathematica computer language launched a multimillion-dollar company, now sets his sights on a more daunting goal: understanding the universe. Wolfram lets the world see his work in A New Kind of Science , a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems.

On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day.

Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

From Library Journal

Galileo proclaimed that nature is written in the language of mathematics, but Wolfram would argue that it is written in the language of programs and, remarkably, simple ones at that. A scientific prodigy who earned a doctorate from Caltech at age 20, Wolfram became a Nobel-caliber researcher in the emerging field of complexity shortly thereafter only to abscond from academe and establish his own software company (which published this book). In secrecy, for over ten years, he experimented with computer graphics called cellular automata, which produce shaded images on grid patterns according to programmatic rules (973 images are reproduced here). Wolfram went on to discover that the same vastly complex images could be produced by even very simple sets of rules and argues here that dynamic and complex systems throughout nature are triggered by simple programs. Mathematical science can describe and in some cases predict phenomena but cannot truly explain why what happens happens. Underscoring his point that simplicity begets complexity, Wolfram wrote this book in mostly nontechnical language. Any informed, motivated reader can, with some effort, follow from chapter to chapter, but the work as a whole and its implications are probably understood fully by the author alone. Had this been written by a lesser scientist, many academics might have dismissed it as the work of a crank. Given its source, though, it will merit discussion for years to come. Essential for all academic libraries. [This tome is a surprise best seller on Amazon. Ed.] Gregg Sapp, Science Lib., SUNY at Alban.
- Gregg Sapp, Science Lib., SUNY at Albany
Copyright 2002 Cahners Business Information, Inc.

About the Author

Wolfram is the creator of the Wolfram Language, Wolfram|Alpha, Mathematica, and is a well known scientist.

This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.