Intelligent Agents - Stuart Russell and Peter Norvig show how intelligent agents can be built using AI methods, and explain how different agent designs are appropriate depending on the nature of the task and environment. Artificial Intelligence: A Modern Approach is the first AI text to present a unified, coherent picture of the field. The authors focus on the topics and techniques that are most promising for building and analyzing current and future intelligent systems. The material is comprehensive and authoritative, yet cohesive and readable. State of the Art - This book covers the most effective modern techniques for solving real problems, including simulated annealing, memory-bounded search, global ontologies, dynamic belief networks, neural networks, adaptive probabilistic networks, inductive logic programming, computational learning theory, and reinforcement learning. Leading edge AI techniques are integrated into intelligent agent designs, using examples and exercises to lead students from simple, reactive agents to advanced planning agents with natural language capabilities.
Description:
Intelligent Agents - Stuart Russell and Peter Norvig show how intelligent agents can be built using AI methods, and explain how different agent designs are appropriate depending on the nature of the task and environment. Artificial Intelligence: A Modern Approach is the first AI text to present a unified, coherent picture of the field. The authors focus on the topics and techniques that are most promising for building and analyzing current and future intelligent systems. The material is comprehensive and authoritative, yet cohesive and readable. State of the Art - This book covers the most effective modern techniques for solving real problems, including simulated annealing, memory-bounded search, global ontologies, dynamic belief networks, neural networks, adaptive probabilistic networks, inductive logic programming, computational learning theory, and reinforcement learning. Leading edge AI techniques are integrated into intelligent agent designs, using examples and exercises to lead students from simple, reactive agents to advanced planning agents with natural language capabilities.