Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity
Key Features
Learn how to apply core machine learning concepts to your games with Unity
Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games
Learn How to build multiple asynchronous agents and run them in a training scenario
Book Description
Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API.
This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem.
What you will learn
Develop Reinforcement and Deep Reinforcement Learning for games.
Understand complex and advanced concepts of reinforcement learning and neural networks
Explore various training strategies for cooperative and competitive agent development
Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning.
Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration
Implement a simple NN with Keras and use it as an external brain in Unity
Understand how to add LTSM blocks to an existing DQN
Build multiple asynchronous agents and run them in a training scenario
Who This Book Is For
This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity.
Table of Contents
Introducing Machine Learning & ML-Agents
The Bandit and Reinforcement Learning
Deep Reinforcement Learning with Python
Adding Agent Exploration and Memory
Playing the Game
Terrarium Revisited – Building A Multi-Agent Ecosystem
Description:
Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity
Key Features
Book Description
Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API.
This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem.
What you will learn
Who This Book Is For
This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity.
Table of Contents